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Paqe On Title
RATIONAL CALCULATION OF LAMINAR

5 _ AND TURBULENT COMPRESSIBLE
-BOUNDARYHLAYERSJWITHtHEAT TRANSFER1

N. Scholz

F ABSTRACT: An approximate procedure for the calculation of
laminar and turbulent boundary layers with available pressure
and wall temperature is given for engineering use. The in-
fluence of compressibility and heat transfer on the boundary

15 layer flow is taken into account. Some results of calcu-
lation are communicated.

20 -1. Statement of the Problem Cover a, e Source /33*

- The following considerations concerning the calculation of compressible

boundary layers are intended primarily as a contribution to the practical

25 spects of boundary layer theory. The success of boundary layer theory in the

Lrieatmen-t-o-f-engin-e-ering probl-ems and-esp'ecria-lly--n-the-deve-lopment-o-of

chematic methods of calculation, capablle of application by nonspecialized

individuals, is making them an ever increasing and valuable aid in industrial

30development. The problems encountered in this work are mainly of a highly

complex nature, so that a more or less i!dealized statement of the problem

-must be formulated for a theoretical treatment. It is precisely for this

35 range of application that calculation methods have been employed which are

capable of describing the important content of the process while disregarding

certain physical details and whose treatment is as simple and universal as

4o -possible. These preliminary remarks are made because the method of calculation

proposed below will admittedly fall short of providing complete satisfaction

-in the theoretical respect, but provide the developmental engineer with a

tool that he can use to obtain a rapid (albeit frequently quite rough) answer

-to the numerous problems encountered in practice.

50 l-)elivered on October 10, 1958 at the anninual meeting of the WGL in Stuttgart.

*Numbers in the margin indicate paginaton in the foreign text. 
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As is known, the flow of a medium along a thick boundary, in addition to

the flow boundary layer in whichPe Q8-o v it edecreases from the total value

Pof the external flow to a zero value at the wall, in the general case also

iinvolves a temperature boundary layer in which the static temperature of the

_flow medium changes from the external flow value to the wall temperature.

10 _ Hence, the deviations in temperature within the boundary layer may be

caused either by a heating of.the flow medium as a result of internal friction

For by a change in wall temperature caused by the wall itself. The

15 -former becomes more significant with increasing Mach number, while the latter

_occurs when the wall is heated or cooled. In each case, the reactive effect

-of this temperature boundary layer on the flow boundary layer rests on the

rdependence of the material properties of the flow medium on the local temper-
20 Cover Pate Source

ature.

For constant material properties, we already have very satisfactory

boundary layer calculation methods which required (in both the laminar

25 -and turbulent cases)_only the_quadrature of certanh"functions that must be

determined from the given friction-free flow. An attempt is made to derive

-an analogous method that approximately considerslalso the influence of the

30 variable material properties as a result of frictional heat and heat transfer

-and leads back to the known quadratures in the boundary case of constant

material properties. Hence, it shall b&elimited to the plane case, mentioning

35 -only that the rotation-symmetrical case! as is otherwise conventional, may be

included.

2. Symbols /34

40 x, 'y coordinates in the direction of the wall and perpendicular to it

reference length, generally the running length of-the boundary-layeI

, '8T '. the thickness of the flow and temperature boundary layers

45 - T -energy loss and heat gain thickness according to equations (7) and

~_ 6T(8)

-, 6* momentum loss thickness and compression of flow boundary layer

_u, U velocity in the boundary layer and at the outer edge
50 

[2-Even Roman Odd
Even Roman Odd



T
6

temperature of the flow med;

outer edge Page On

-Tw, Tr wall temperature, forced or

-T
0

isentropic ram temperatureal

_P density of

-i6 viscosity oU

c specific heat

-W thermal conductivity of the

-d dissipation of the boundary

_g acceleration due to gravity

-Re , Re- Reynolds numbers (= p Ul1/1

-M local Mach number of flow ox
Cover Pac

-Pr Prandtl number [for gases #'

-H boundary layer shape factor

-H boundary layer shape factor

HT boundary layer shape factor

-CfJ CfO ccefficient of friction of a

random or at M = 0 and a hea

cf . C.f local coefficient of frictic

random or at M = 0 and a hea

-K isentropic exponent

n, n exponent of the dissipation

W_ exponent of the viscosity l1

a, b constants

- Meaning of Subscripts

ium in the boundary layer

i Title
in a heat-insulated walls

e Title

I the flow medium

itside the boundary layer

and at the

flow medium at the wall

layer profile

I, = pU6/U/6)

iside the boundary layer
le Source
f(T)]

of displacement thickness (= 6*/p)

of energy loss thickness (= 6/p)

of heat gain thickness (= 6T/6)

flat plate at zero incidence,

.t-insulated wall

In of the flat plate at zero incidence,

Lt-insulated wall

statement (10) or the

LW (2)

friction law (12)

for incident flow

for the reference temperature TB according to equation (3)

for the flat plate at zero incidence with M = 0 and a heat-insul-

ated wall (exception for T
0

see above)

for values that vary with the integration variable x'
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3. Reference Temperature of Boundary Layer With Non-Constant Material
Properties Page Onf Title

5 F In the following, we shall discuss that the flow boundary layer of

gaseous flow medium whose Prand:tJl rnumb- erTislkn nown to be on the order of 1

and is practically independent of temperature. For this case, the thickness of

10 -the temperature boundary layer has approximately the same value as that of the

flow boundary layer. A certain change in the density and viscosity develops

-for the flow boundary layer in addition to the velocity profile due to the

15 _changing temperatures inside the boundary layer (Figure 1). With the usual

simplification p = const within a boundary layer profile,. we obtain the follow-

ing for the density according to the general gas law

20 r (y)/,~ = [ (y)l-' (1)20

rand for the viscosity with the known power law

] / , (y)/mV =I(y)/T,,:.. | (2)
25_ - $

, : ............... We can think of the temperature

. -- ' T _ 5 r boundary layer as being composed of

30: _ the superimposition of two funda-

mental cases, first the case without

heat transfer (a wall not transparent

.......... ._ -. to heat), in which the temperature
35

Figure 1. Flow Boundary Layer of a increases with proximity to the walls
_Gaseous Flow Medium (Schematic). Curves due to internal friction and reaches
of velocity u(y), density p(y) and
viscosity p(y) for temperature profile the value Tr at the wall, and secondly

40 roughly corresponding to that in the case of a heat transfer at the
Figure 2.

wall, in which the layer of the flow

medium near the wall is influenced by the thermal conduction by means of the

45 induction of a certain wall temperature fW (heating or cooling)'(Figure 2).

-The gradient dT/dy at the wall determine the direction of the heat transfer.

It is now evident (and has alread bAeen proposed by several researchers)

50 [1, 2] that the influence of the different temperatures within the frictional
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ayer can be taken into account by the fact that the material properties

of the flo medium can be assumead constant within the frictionall layer, but

their values will differ from those in the external flow in the sense that they
-v r,-v r Fafe '11't!.'acorrespondlto a certain average temperature within the frictional layer. It

10 material properties and the temperature at which the material properties of the

-boundary layer flow are to be determined will be called the reference temp-

erature T
B
. This reference temperature must be composed of the external

!5 -emperature T6 and a component that depends on the temperature differential

r - T6 as a result of frictional heat and the temperature differential Tr

- TW due to heat transfer, making up the parts of the temperature boundary

layer. An appropriate simple relationship is the following

20 - Cover Pace Source

2'0 TB T,, (T- T) - b (T - TW) (3)

with a and b still unknown dimensionless numbers. Strictly speaking, these

25 numbers will depend on the critical similarity values, namely

a and b equal to functions of Pr, M, Re, H. (4)

30 In the case of the dependence of the reference temperature TB on the Prandtl

-umber, experimental studies are available only for heat transfer [3], which

show no significant dependence in the area of Prandtl numbers in the vicinity

35 of 1 (gaseous flow medium), so that TB may be considered as practically

independent of the Prandtl number due tc the analogy between heat transfer and

friction. Dependence on the Mach number was investigated for the laminar

40 boundary layer at constant external velocity by E. Eckert [4] by comparison

with a stricter theory [4], where there was practically no dependence in the

range 0 < M < 10. For the case of turbulent boundary layers with constant

external velocity the relationship-through comparison with the theory of

45 A. Walz [6] was investigated. The result is shown in Figure 3 and likewise

_ NA A
50 _
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_shows practically no dependence on the Mach numberl Since the form of the

iboundary layer profile in the casPeaf the laminar boundary layer flow is

5 strictly (in a turbulent boundary layer, with good approximation) independent
I I a :~ver PaAc Titirof the Reynolds. number, a and b cVan aPlso b xpected to be independent of

_the Reynolds number. For the dependence of the boundary layer shape factor

10 -H and hence the curve of external flow U(x), due to the lack of suitable

Lcomparative values especially for the turbulent boundary layer, little can

-be said at the present time. Since we obtain a and b from the comparison

5 with results of a boundary layer with constant external velocity, we can
15 I

disregard the influence of the change in the shape parameter H with respect

to the value of the boundary layer of the plate. A similar procedure in the

law of energy dissipation of a boundary layer profile led tohighly useful results

20 Cover Pav;e Source 
-(cf. [7], p. 537), so that the disregard of the influence of H on the reference'

-temperature for an approximate method allso appears justified to a certain

extent. Deviations can be expected primarily in the case of a sharp rise in

25 pressure (vicinity of the point of shedding).

The frictional temperature Tr is known to be a function of the heating

_factor r and the Mach number of the external flow:

30 , T T --TM ( M) (5)
;. I.2

_and in the case of gases with Prandtl number of approximately 1 the function

35 
lThe equations used to determine a and b from the coefficient of friction of
_the flat plate are as follows:

_ j~ 1 q s 1 Fl I a -f- n

4' 'o-,L .. .. b +,, cT.-' ' -_ '0 Cf. T,, - ; (f u)T' !.- ,.; \
40 M., Tr -- T W

r. -":!,

The subscripts Tr and TW represent the ratio of the coefficients of frictionr W

45 and T = T and T = const T . The co rresponding formulae with the local

.coefficients of friction are: 

Tr b .c ln (cfA/r

T, T Cf. T
r

X Tw _.50 _r =

Even Roman Odd
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-r(Pr) can be given in good approximation by fractional powers of the Prandtl
Page On0 Title

number (cf. [4]). Finally, we obtain for the reference temperature

T_ = [ I r z

1

I - - 1 I

TB = T[1+ r x- M2 (a-b)-b] + b Tw

with the constants according to Table 1.

.1* C j r t- - a=dO
rb

_ T- T

-

°-- Tw 0,2 --

f 1 0 _ b 02 80 10.
- . -____ Pa e Sc_. 

Figure 3. Values a and b of the
.___-_.__=,__ -Reference Temperature According

Equation (3) as a Function of Ma

_-- at, -rT/dl " -- T - T~ -Number !of,,Incident Flow of the
r,-TT -W rd 4 1

. - T-T , W --Turbu--e1nt-Pl ate-Bounda-ry-L-ayer-
o obtained from c(M." Tr, TW),

Figure 2. Temperature Boundary Layer f
of a Flow With Heat Transfer (Schematic) * obtained from cf(M , Tr), both
Dashed curve without heat transfer, according to [6].
finely shaded area: temperature
_component due to heat transfer to the
wall. "Heat flow from the heat medium -
- wall: (dT/dy)

W
> 0, wall -+ flow

-medium: (dt/dy)W < 0.

"T'ART. 1 - TVAIIF h THF F NrTA NTF T r TT F THFT PFFF r TFMPFRATTIID TEQUATIONS (3) t o (6), LAMINAR ACCORDIN
EQUATIONS (3) to (6), LAMINAR ACCORDINGI

- - __ - .,Y I

to
.ch

_I_ I

rval 111 \ lT r LL.ll.UL. 1SvLror . U\rL 1J .l

TO [4], TURBULENT ACCORDING TO FIGURE
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Frictional layer a b r(Pr)

Laminar .72 0.50 Pr /2

Turbulent 10.48 0.20 Pr /
1 I - I . - __1 __ - .4~~~~~~~~~~~~~~~~~

(66)
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!)4. Integration of the Law of Conservat on of Energy of the Boundary Layer

5 , i
_n For the proposed method of approximation, we shall use the energd law of

-te boundary layer theory to calculate the energy loss thickness which serves
Cover Pa Title I 

as a measuremof the loss suffered upstream in the boundary layer with respect

-to kineticenergy of the flow as a result of friction and is defined by the

10 equation 

IOe, u ,8 - J (Y) . (y) U,,(Y) - ,,(y) d() y ./i

5In addition, we shall use a characteristic value of the corresponding temperaL

j-ture boundary layer as the heat-gain thilckness, which is a measure of the

increase in flow of perceptible heat due to upstream frictionand heat gain or

20 oss by the wall and is defined Cbyvetheae1quajt-io [ne

U T,) , f $ (y) 1 (y) T(y) - T,] y (8) '/36
(8)

(cf. [7], page 328, where the enthalpies are used instead of the temperature.

,F-i-na-l-ly -t-he-diss-i-pa-t-ion d-d-i-sappea-rs-i-n t-he-ene -r aw-u-r:epresent-i-ng-the_ _

Fnamount of energy converted locally in a boundary flayer profile from the

1principal flow into frictional heat and urbulence (cf. [7], page 537]. -The

energy law is written with these three values (cf. [7], page 328 ff., but

where the limitation of a wall impermeable to heat is made, also [8])

1 d(n,,U:,d) ldU d (I- Q ,)U x L 2T d Q. r U'
;r _-25 =2 I'n U I (9)

For integration of this equation we require a relationship between the

energy loss thickness 6 and the value d and T. We will obtain the former

t3 from a generalizaiton of the corresponding loss for the dissipation in a

boundary layer flow with constant material properties according to E'.

iTruckenbrodt '[8], which derived from measurements by J. Rotta [9]. Under the

5 .assumption used in the previous segment of a boundary layer with quasiconstant

,material properties, which can be obtained at the ref,erence temperature TB,

Ithis law will read as follows

NA A
50Even Roman Odd
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d .- i 11B'

-5n a~di, tI T..5 n addition, the representati'on of a constant reference temperature T within
Cover Pale Title I

-a boundary layer profile will resemeble he relationship

L- U B e U \
-since in the definition equation (7) for 6 the density is treated as constant.

The same is true for the momentum loss t~hickness o (cf. [7], page 328), from

-which a boundary layer thickness ratio H independent of the temperature

15 distribution is obtained2 . If we now use (1) and (2) with P(y) = PB to intro-

-duce the material values of the external flow into (10), we will obtain for the

kdimensionless dissipation
d20 -d = H( - /T I n) '

This law is given as a working hypothesis, which allows integration of the

25 energy law; Here T is selected so that the law is fulfilled as well as

possible on- the average, proceedin--fromat-i the cons-rderaious--

section. The exponent n in (11) can easily be made to agree with the exponent

30 of the friction law of the'flat plate with zero incidence with constant

material values

r ..
-> t R. e (12)

35 L_
while with U = const and the dissipation law (10) the energy equation (9) is

-integrated. A comparison with (12) then gives us (cf. also [8]) t

40

i .neaed . . ) '(13)

Table 2. gives a compilation of the [exponent, while for turbulent boundary

45 'layers the Prandtl power law of plate friction (cf. [7], page 500) is given

._ I F
[120n the other hand, this is not true fo] the boundary layer thickness ratio

IH"·-= 6*/, for which the author giveskaniAestimate in [10].

50 _ _ _ __i_ n __.
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TABLE 2. EXPONENTS~ OF THE RESISTANCE
LAW (12) AN Dd CORRESPONDINNG EXPONENTS

OF THE DISSIPIATION LAW (12)

Exponent rob .Dojn T:i+- n

Laminar |1 1/2

Turbulent 1/15 1/4

-A relationship between the energy loss density 6 and the heat=gain thickness

ST can be established by establishing an energy balance between two boundary

-layer profiles separated in the flow direction. The loss of kinetic energy

of the main flow is therefore equated to the increase in heat transferred to

-the wall by thermal energy created by dissipation and by heat transfer 3.

- The following boundary laye¥r.values; ar-e obtained:

Hr M + -

l . 1A 2 (14)

,1 '~ ~~ Tw - (Tw T R,/l(
I_ _ I _ _ _ _ _

{_ J ...----- .- !t ....F This strictly valid relationship fcr HT involves a link between the flow
jand temperature boundary layers, in case there is a heat transfer at the wall

I
F3 The thermal balance for two points dx' japart in the boundary layer will be

d- -
i--- "xS U (U2

-
- u2) d y =

0

T

- ~~~~~~~~~~= 2gC 7 d, fQ94u(T-T-)dy -g 2 ;V (d) 

For the heat flux at the wall, the local Nusselt number is introduced;

-(- d = Nu (x') a '

-The integrals are replaced by 6 and Tl!according to (7) and (8). Then an
i-integration from 0 to x with x' as the integration variable following intro-
_duction of the speed of sound of the outer flow as well as the Prandtl and
Reynolds numbers gives us the equation (114).

- I
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(Nu ¥= 0 ) . The integral of the second term represents the local Nusselt number 

obtained upstream from point x, which can be estimated in simple cases. Since 

the value of H fortunately is not very much involved in the integration of the 

energy law, we can content ourselves with estimates of this term. A simple and 

useful approximation formula1* is 

Tr (15) 
HT 

M" + 
r» 

where we use average values over the running length of the boundary layer for 

M and T w, in order to obtain a value of H which is independent of x. With 

the dissipation law (11) and the introduction of H as an approximately constant 

average value along the boundary layer, the integration of the energy law (9) 

may be undertaken. In the following, we shall indicate only a few intermediate 

steps in this calculation process. The integration takes place within the limits 

0 < x' < x. As a substitution we can use 

with the derivation 

dx' 

(16) 

d(QAUsH6) - QAU3HddUl 
(17) 

dx' 
-1-2//-; 

u dx'} 

^This is obtained from the related assumption that the temperature profile of 
the boundary layer is similar to the profile of the velocity quadrate of the 
of the flow boundary layer, i.e.; 

If 

1. By introducing the relation­

ship into the definition equations (7) and (8), we will obtain 

Inasmuch as 6_ « 6, we must assume that Pr 

,: '• u 

The first term for r - 1 (Pr - 1) agrees with the exact result (14). We shall 
correct the result by replacing the fact or of r by 1 and thus obtain (15), which 
offers useful values for Prandtl numbers in the vicinity of 1, and for temp­
erature differentials that are not too great. 

11 
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Using (16), we will obtain the following from the energy law (9)
Page On~ Title

I \

dx'~ 7 +2. .t), U:' f dU
-d' (e,~ U H O) + 2 HI U x' =

I. . ./ TB)l -u o e 'l' Pt !iL
.. - -1 --- __ - G, ~ ~ l:~') )0 

(18)

where the left side shows the brackets in (17). Substitution of (18) into (17)

-allows separation of the variables, since 6 drops out. Then we will have

.I.

- As E. Truckenbr

U2ZHT (+n (p,~ U3 6)l-n =

=fi2(\Itn)lHne ,'/'fl U'3+ 2n- 2 HT(1+ n) X

o
T' -- n (

odt [8] has showndx'

bodt [8] has shown,[

(19)

._2(1 I n)f#H,=E l (20)+

is a function that is largely independent of the shape factor H and hence the

-running length x, so that it can be extracted before the integral. The solution

of (19) for the desired value of 6, being made dimensionless with the values of

-the incident flow (subscript ) and theheboundary layer length 1, finally gives

us the equation

'_2 I; I... L -I+ 2n
r O ..- '~ fr 217.r dK)~~ the t,,. plate bou

The first factor is obtained from a comparison withl the flat plate bound-

-ary layer with zero incidence at M = 0.
I
cf0 is the incompressible coefficient

of friction of the plate with zero incidence for the Reynolds number H0
of the

-corresponding formed parameter formed with the values of the incident flow,

-which in the laminar case has a value of 1.56 and in the turbulent case with

-Re = 10 is approximately 1.80 (cf. [101o). For T= T , p = pO and HT = 0,

(21) becomes an equation for the boundary layer without frictional heat and

[12
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heat transfer (cf. [8] and [10]). It is valid both for laminar and turbulent

-flow and requires for its evaluatio- ol!yTatqcidadrature over a function of the

5 given velocity distribution along the wall.

I Cover PaJ'e Title I
To determine the momentum loss thidkness as well as the sensitivity to

solution, a determination of the local sihape factor H(x) is necessary, but

10 we shall not discuss it here. In reference to the quadrature method of

Truckenbrodt [8], this comparatively simple method can be carried out, as we

have discussed elsewhere [10].

15 5. Sample Applications

- For the case of the flat plate with zero incidence, we obtain from (21)

-with ['

20 Covel cf -= H urce
-'20~~~~~~~~~~2!

the ratio of the coefficient of friction of the compressible boundary layer to

25 the incompressible boundary layer
-_____( __ , ',,, ' 14")._

c f( ._r as J o (22)

30 For the case of air as a flow medium, we have evaluated this equation

in Figure 4 for a wall which is impermeable to heat as a function of Mach

-number. In accordance to the determination of the constants for the reference

35 temperature (3), the curves in the laminar case agree with the theory of

Young and Janssen [5], in the turbulent case with Re = 107 with the theory of

Walz [6]. The curve with the Reynolds number in the turbulent' case comes from

40 -the change in the exponent n, which it is related by (13) to the exponent
n of the resistance law of the flat plate with zero incidence. On the basis ofi

-the turbulent Prandtl-Schlichting resistance law ([7], page 502), the latter

is obtained from the slope of the resistance curve and is equal to

_ , T logRl 1 (23)

NASA
50
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C/C - C o Figure 5 shows the ratio

s, /Clp lainar e On_ _Title of coefficients of friction

_____5 ;_ ____ %for the flat plate with zero

0_i o.s _or Pa e Title incidence with heat transfer.

_ S pi, \ > turbulent The abscissa is a ratio of the

1e0 = wall temperature T which is
10 i W "

02_-- -- - -- _l constant along the plate to

the isentropic ram temperature

' : T0 of the incident flow. The

15 - boundary between the cooling

Figure 4. Ratio of the Coefficient of and heating of the wall is
Friction of Incompressible Boundary given by T = Tr. The friction!
-Layer on a Flat Plate with Zero Inci-

20 dence Without Heat Transfer as ra°ufmict _ SourceiS increased by cooling the
of the Mach Number of the Incident Flow! wall and reduced by heating it.,
Flow medium: air with Pr = 0.72, w = 0. 6
and n = 1 (laminar) and n according to In Figure 6, for the case

equations (13) and (23) (turbulent).f air, we have the boundary
25 ---, Boundary case Re + m with n - O. If 0.

-l-aye-r -i-n--a-l.ent-ic-u-l-a-r- pr-ofi-le-I

jwith 5% relative thickness

-calculated for an incident flow (Mach number M = 3). In order to show the

characteristic differences in the boundary layer on the flat plate, we have

based the energy loss thickness of the boundary layer along the profile contour.

-in each case on the local energy loss thickness of the incompressible boundary
35 slayer on the plate. The temperature is equal on the one hand to the frictional

-temperature (no heat transfer, dashed lines) and secondly equal to 4000 K at an

-external temperature of 216.50K, corresponding to an altitude in the atmosphere

:0 -of 11 km. (heat transfer from the air to the wall, dashed lines); the horizontal

Flines give the decrease in frictional losses of the compressible boundary layer'

Fat the flat plate. The energy loss thickness is initially less than that at
'the plate and rises above the plate value toward the rear edge of the profile.

45i-This tendency is evoked primarily by the density of the external flow at the

hlentincular profile which decreases toward the rear edge (the Mach number in-

creases linearly with x). If the wall cooling is limited to the rear half of

50 r NASA

e .i.. _.. _Rm O_
Ev R
Even Roman Odd



-the profile, the curve following the dashed path will deviate from the solid

curve for the front half. If onrlgy the fronLthalf is cooled, the solid curve

-that is a continuation of the dashed curve will result in the rear half. The

-cooling in the front half increirasvesr thejenergye loss thickness more intensely

-than the cooling of the rear half. This is interesting, since the heat transfer

in the front part of the profile is better than in the rear.

1.2

-

aer Pa!

0,rI 1

0,4 0.8 1.2 1.6 2.0
-I . . wT/Te ·Cr~ ~~~~~~~ ... 

Figure 5. Ratio of the Coefficients of
.Friction of Compressible to Incompressil
_Boundary Layers on a Flat Plate with Ze:
Incidence with Heat Transfer as a
Function of Wall Temperature. Flow

_medium: air with Pr = 0.72 and w = 0.76
turbulent, Re = 107 with n = 0.19.

- TW = Tr, no heat transfer;

-T = T, cooling of the wall to externaZ
Wtemperature.
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Figure 6. Curve of the Energy
Loss Density Relative to a 5%
Thick Lenticular Profile with
MO = 3 Along the Depth of the

Profile. -, TW = T
W = 400°K at T

T = 400 0K at T = 216.50 K.
W 00
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The reference value 60(x) is the

local energy loss density of
the boundary layer on the flat
plate with incompressible flow.f

Flow medium: air with Pr = 0.72,
.. = n 7 .an, D -- 1 fn7U. I'~~~~~~~~~~~~~~~~~~~~ 041.4. r¶.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
W = --. /a d.li. 1C -.U ,

turbulent.

The frictional resistance of the lenticular profile is obtained from the

jenergy loss thickness 6H at the rear edge of the profile. If we relate the

coefficient of friction again to that of the flat plate without heat transfer

-at M = 0, we will have NASA
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- (Cf) p1oile Cf (H H ( H 
1

)3

-Cf Cf, (H,)o o,\ M-, ' (24)

-The value of this ratio betwee othe effic ts of friction have been sum-

marized in Table 3 for the different assumptions of wall temperature. The

10 -second column gives the percentile deviation from the value of the flat:plate

impervious to heat for a given Mach number. Throughout there is a slight de-

crease in the frictional resistance of the lenticular profile with respect to

|_the plate with zero incidence with equal wall temperature, caused by the

5-pressure drop along the wall contour of the lenticular profile. A. D. Young

Land S. Kirkby [11], for a 5% thick lenticular profile with heat-impervious
-wall, with M = 3 (interpolated) and Rel = 107, calculate the value

20 Cover Pa(ce Source

(c f) rofile/c fo= 0.630

25 -in contrast to our value of 0.639. For the total resistance, we add to this

-the pressure resistance.

soF- TABLE 3. VALUES OF RATIO OF COEFFICIENTS OF
30 rFRICTION FOR A FLAT PLATE AND 5% LENTICULAR
-F PROFILE IN AN INCIDENT FLOW OF M = 3) FLOW

MEDIUM: AIR WITH Pr = 0.72, w = 0.76 TURBU-
LENT BOUNDARY LAYER IWITH R = 10). 

L'-·~,5 V ~~~~~~0 < x.cl Th2 T' .T .Fl5 Noe c <a:s 1/2< Ti, 400' 0,665 + 1,Ll%

Note: commas indicate decimal points.

0NAA
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Contour Wall temperature| i Cf Cf I fC )Tiv' T.

0 <x< l:Tll= Tr 0,658 -

Flat plate 0I o <x<l:T -= 4000 0,710 + $,0o' 

0 <x < :Tu = Tr 0,639 -2,9. o

Lenticular 0 < x <,l:Til = 4000 0,675 r 2,6" '
profile, < m' ,

d/l = 5% 1/2 <xT.~":.00 060
·· :?.;' r
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